Things to remember in the last hour before the exam: Level 2 Organic Chemistry

(This is not a revision sheet - you've done that by now - it's a list of things you might want to remind yourself about ...)

- 1. Meth-, eth-, prop-, but-, pent-, hex-
- 2. Naming. (1) longest C chain (2) number from end that gives lowest numbers for C=C or substituents e.g.-OH group (3) separate the numbers from numbers with comma (4) separate numbers from letters with a (5) don't forget di- (two). tri- (three). tetra- (four). (5) list substituents alphabetically i.e. ethyl before methyl BUT remember dimethyl is "m" and not "d".
- 3. Alkanes C-C: alkenes C=C: alkynes C \equiv C: haloalkanes R-X, primary amines R-NH₂: alcohols R-OH, carboxylic acids R-COOH.
- 4. Isomers (same molecular formula but different structural formulas)
 - Constitutional molecules with the same molecular formula with atoms bonded together in different orders e.g. propan-1-ol & propan-2-ol. or butane & methyl propane.
 - Geometric (cis and trans) isomers occur as no free rotation around C=C; need to have 2 different atoms/groups attached to each C of the C=C. \cap shape is cis.

5. Classification of alcohols and haloalkanes as primary, secondary or tertiary – look how many C atoms are attached to the C atom that is C-OH or C-X.

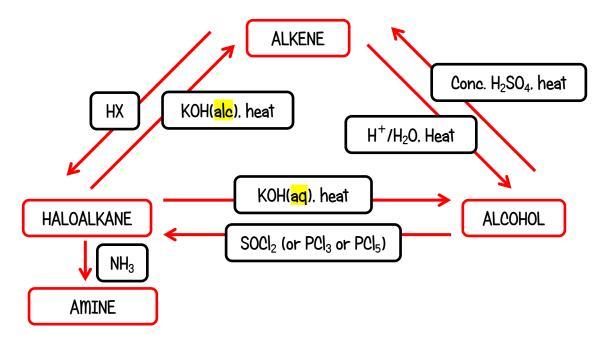
6. Properties

- solubility. Hydrocarbons (alkanes, -enes, -ynes) & haloalkanes insoluble in water. Form 2 layers immiscible. Small amines, alcohols & c.acids are soluble but as C↑ solubility ↓ (since non polar H/C portion of molecule gets bigger).
- melting & boiling points. As C↑ m.pt & b.pt ↑. Alcohols & carboxylic acids have higher m.pt & b.pt than corresponding alkanes. E.g. ethanol and ethanoic acid are both liquids @ room temperature.

7. Chemical reactions.

- addition reactions of alkenes (small molecule adds across C=C double bond; one product only: product is saturated, has C-C).
 - \circ H₂/Pt. Cl₂. Br₂*. H₂O/H⁺. polymerisation and hydrogen halides (including major and minor products on addition to asymmetric alkenes rich get richer: H adds to C of C=C that had most H). (*RAPID decolourisation of orange bromine water)
 - n $C_2H_4 \rightarrow -(C_2H_4)_{-n}$ (n is a large number) monomer = ethene (unsat), polymer = polyethene (sat).

- substitution reactions: (atom/group is swapped for another atom/group: 2 (or more) products made).
 - o alkanes with halogens (monosubstitution). e.g. $CH_3CH_3 + Br_2 \rightarrow CH_3CH_2Br + HBr$ (Needs uv light and/or heat. SLOW decolourisation of orange bromine water).
 - o alcohols with hydrogen halides. PCl₃, PCl₅, SOCl₂ swaps the –OH for –Cl.
 - o haloalkanes with NH₃/heat (R-Cl \rightarrow R-NH₂) and aqueous KOH/heat (R-Cl \rightarrow R-OH)


oxidation of:

- o primary alcohols to form carboxylic acids with MnO_4^-/H^+ , heat (colour change purple MnO_4^- to colourless Mn^{2+}) or $Cr_2O_7^{2-}/H^+$, heat (colour change orange $Cr_2O_7^{2-}$ to green Cr_3^{3+})
- \circ alkenes with MnO₄⁻ NO HEAT NEEDED. (colour change purple to brown MnO₂); with H⁺/MnO₄⁻ (colour change purple to colourless). A diol is made.

• elimination of:

(including identification of major and minor products for asymmetric reactants – the poor get poorer) An H is lost from C that has the least H atoms: Turns a C-C into a C=C and another small molecule made.

- o water from alcohols.(conc. H_2SO_4 , heat). R-OH \rightarrow alkene + H_2O
- o hydrogen halides from haloalkanes, (alcoholic KOH/heat) R-X \rightarrow alkene + H-X
- acid-base reactions of carboxylic acids and amines.
 - o carboxylic acids are weak acids (pH 3-4). R-COOH + $H_2O \rightleftharpoons R-COO^- + H_3O^+$. Turn blue litmus red & green UI orange. React with reactive metal e.g. Mg (making salt + H_2), react with carbonates or hydrogen carbonates (making salt + H_2O + CO_2). Often have "sharp vinegar" smell or unpleasant smell.
- o amines are weak bases (pH 11-12). Turn red litmus blue. Fishy smell! $R-NH_2 + H_2O \rightleftharpoons R-NH_3^+ + OH^-$ SOME VERY IMPORTANT INTERCONVERSIONS YOU REALLY CAN'T DO WITHOUT!

