No Brain Too Small ● CHEMISTRY X Surface area	concentration	tomporaturo	catalyst
 Sufface area Sufface area Lump Powder For the same mass of substance Powder has more particles exposed to collisions More collisions/s between particles of A and B Rate increases as SA increases 	More concentrated (solution) (larger mol L ⁻¹) means More particles of A/mL More collisions/s between particles of A and B Rate increases as conc. increases	temperatureAs temperature increases, particles of A move faster so more collisions/s AND particles of A have more E_{κ} (kinetic energy) so now more collisions have $E_{\kappa} \ge E_{\alpha}$ so more collisions/s have sufficient energy to overcome the energy barrier Rate increases as more successful / effective collisions/s	catalyst Catalysts provide alternative reaction pathway with lower E_{α} . More particles have $E_{K} \ge E_{\alpha}$ so more particles have sufficient energy to overcome the energy barrier. Rate increases as more successful/effective collisions/s Energy Reactants Products
collision theory Particles of A and B must collide with correct orientation AND with sufficient energy for a collision to be *successful / effective*	RATES OF REACTION REVISION how reaction rate changes as a reaction occurs Rate of reaction greatest at start. Many particles of A and B so many collisions/s. Rate decreases as reactants are used up – less collisions/s. Reaction ends when one of A or B has run out – volume or mass line goes horizontal. The same mass of solid and conc. and vol of solution will make the same volume/mass of gas.		Progress of reaction ways of measuring rate
activation energy E _a The <mark>minimum energy</mark> particles must possess for a collision to be successful/effective. Energy barrier.	of Gas	ne time (s)	Ö 0:40

at equilibrium	equilibrium constant expression	Le Chatelier' s principle	temperature
A + 2B <mark>≓</mark> C + 3D	Equation to $K_c \cdots$ $2COF_2 \rightleftharpoons CF_4 + CO_2$	"When a change is applied to a system at equilibrium, the system	 Temperature is ONLY factor that changes K_c value in an
Rate of forward and backwards reaction are equal [reactants] and [products] constant equilibrium constant calculation	$K_{C} = \frac{[CF_{4}][CO_{2}]}{[COF_{2}]^{2}}$ $K_{c} \text{ to equation}$ $K_{C} = \frac{[SO_{3}]^{2}}{[SO_{2}]^{2}[O_{2}]}$ $2SO_{2} + O_{2} \rightleftharpoons 2SO_{3}$	<pre>reacts in such a way as to counteract the imposed change"</pre>	 equilibrium An <u>in</u>crease in temperature favours the <u>en</u>dothermic reaction as this absorbs the added heat energy to counteract the temperature increase A dec. in temp. favours the exo reaction as this releases heat energy etc
Put [] values into K _c expression Don't forget any [] ² etc No UNITS for K _c	NOTE: [<u>P]</u> , remember [] <mark>×</mark> , no "+"	principles'. $\mathbf{R} \mathbf{E} \mathbf{V} \mathbf{S} \mathbf{I} \mathbf{O} \mathbf{N}$	
is a reaction at equilibrium?	size of K_c	catalyst	temperature
 Substitute into K_c expression <u>but</u> calculate 'Q' and not 'K_c'. If Q = K_c reaction is at eqm. If Q ≠ K_c it is not. 	 If K_c > I, more products than reactants / equilibrium favours the products If K_c < I, more reactants 	 catalyst speeds up forward and back reactions by same amount system reaches eqm. quicker no effect on K_c value / yield of product 	 If temperature increases, endothermic reaction is favoured <i>to absorb the added</i> <i>heat</i> E.g. If K_c ↓ as temperature
in industry	concentration	pressure (gases only)	\uparrow , then [P] \downarrow and [R] \uparrow ,
 Want to maximise yield, make as much product as possible \$ 'Compromise' conditions used: High pressure = high energy costs / expensive equipment Low temperatures = slow 	 Increasing [reactant], favours forward reaction / makes more products - to use up the added reactant. Adding /removing reactants / 	 Dec.vol = inc.pressure. Inc.vol = dec. pressure. Count # mol gas = # mol gas If pressure increases, system shifts towards side with fewer MOLES OF GAS (to minimise 	 equilibrium favours reactants As adding heat favours the reverse (endo) reaction, forward reaction must release heat energy and be exothermic If A + 2B ≓ C + 3D:ΔH = -300k -300 kJ tells us fwd reaction is exo. Favoured by low temp,
 reaction Removing product as it forms favours forward reaction. 	products has <mark>no effect on K_c value.</mark>	 imposed change). Changes in pressure have no effect on K, value. 	

Bronsted-Lowry definitions	strong acids	weak acids	strong bases
A proton is a H⁺ion ● Acids are proton donors	Reaction with water is complete / acid ionises completely.	<mark>Reaction with water is</mark> incomplete / acid partially	Completely dissociate in water. Use \rightarrow (BUT not + H ₂ 0)
 Bases are proton acceptors 	Use + H ₂ 0 → • HCl + H ₂ 0 → Cl ⁻ + H ₃ 0 ⁺	ionises. Use + H ₂ 0 \rightleftharpoons ● CH ₃ COOH + H ₂ O \rightleftharpoons CH ₃ COO ⁻ + H ₃ O ⁺	● NaOH <mark>→</mark> Na⁺ + OH ⁻
conjugate acid base pairs conjugate acid-base pair onsists of two substances that	 Have a low pH as [H₃0⁺] >>> [OH-] Turn litmus red, UI red 	 pH < 7 as [H₃0⁺] > [OH⁻] but not very low Turn litmus red, UI orange 	 Have a high pH as [OH-] >>> [H₃0⁺]. Turn litmus blue, UI purple
 iffer only by a proton (H⁺). A conjugate acid is formed when H⁺ is added to a base 	 Would react faster with Mg or CaCO₃ than a weak acid of same conc. as more H₃0⁺/mL 	 Would react slower with Mg or CaCO₃ than a strong acid of same conc. as less H₃0⁺/mL 	 Are very good electrical conductors; total [ions] is HIGH
 A conjugate base is formed when H⁺ is removed from an acid HCN + H₂O ⇒ CN⁻ + H₃O⁺ 	 Are very good electrical conductors; total [ions] is HIGH 	 Are poor electrical conductors; total [ions] is LOW 	weak bases Reaction with water is incomplete / base partially ionises. Use + H₂0 ≓
acid base base acid	ACIDS AND B		• $CH_3NH_2 + H_2O \rightleftharpoons CH_3NH_3^+ + OH^-$
pH calculations pH calculations pH reflects the concentration of H_30^+ ions. The higher the pH, the lower the $[H_30^+]$. Formulae in resource booklet $K_w = [H_30^+][0H^-]=I \times 10^{-14}$ at 25°C * pH = $-\log[H_30^+]$ $[H_30^+] = 10^{-pH}$	amphiprotic substances Substances that can act as an acid (proton donor) AND as a base (proton acceptor) • E.g. H_20 , $HC0_3^-$, $HS0_4^-$ <u>as an acid</u> $HS0_4^- + H_20 \Rightarrow S0_4^{2-} + H_30^+$	salts Fully dissociates in water. Use \rightarrow (BUT not + H ₂ O) e.g. NaCl \rightarrow Na ⁺ + Cl ⁻ NH ₄ Cl \rightarrow NH ₄ ⁺ + Cl ⁻ CH ₃ COONa \rightarrow CH ₃ COO ⁻ + Na ⁺ • Then ion may react with H ₂ O:	 pH > 7 as [OH⁻] > [H₃O⁺] but not very high. Turn litmus blue, UI blue Are poor electrical conductors because total [ions] is LOW
$[H_30^+] = 10^{-14}/[0H^-]$ $[0H^-] = 10^{-14}/[H_30^+]$ You might like to memorise $00H = -\log[0H^-]$ $[0H^-] = 10^{-p0H}$ 0H + p0H = 14	acid, H^+ donor <u>as a base</u> $HSO_4^- + H_2O \rightleftharpoons H_2SO_4 + OH^-$ Base, proton acceptor	as a weak acid $NH_4^+ + H_20 \rightleftharpoons NH_3 + H_30^+$ Since $[H_30^+] > [OH^-]$, pH < 7 as a weak base e.g. $CH_3C00^- + H_20 \rightleftharpoons CH_3C00H + OH^-$ since $[OH^-] > [H_30^+]$, pH > 7	 Na⁺ and Cl⁻ ions do not read further with water. ALL salt solutions are very good electrical conductors; total [ions] is HIGH

😹 No Brain Too Small ● CHEMISTRY 🗙