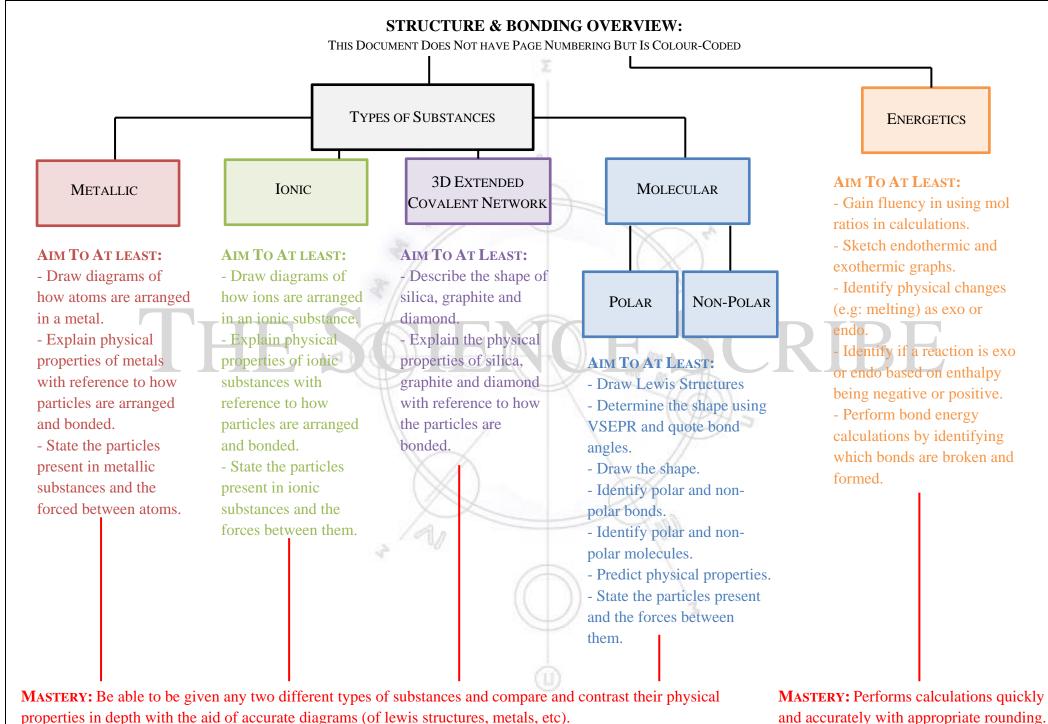
THE SCIENCE SCRIBE: MASTERY GUIDES

STRUCTURE & BONDING


FOR LEVEL TWO CHEMISTRY

This document may be reproduced on the grounds that it will not be edited or sold for profit or exchanged for goods. (*Yes, students and teachers, print and photocopy this – just don't sell it, edit it, or hijack my hard work eh?- Lian*)

Please contact <u>helpdesk@sciencescribe.co.nz</u> for queries regarding the use of this product.

© Lian Soh 2013. The Science Scribe is a registered trade mark.

www.sciencescribe.co.nz

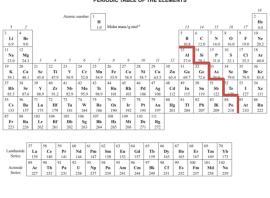
www.sciencescribe.co.nz

METALLIC

DESCRIPTION OF STRUCTURE:

Made up of atoms in a sea of electrons. Electrons are delocalised (free to move around).

Type of Bonding: Metallic

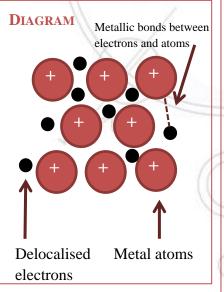

These are relatively strong and will require a fairly large amount of heat energy to overcome.

Metallic bonds do not break in contact with water.

When a force is applied, the metal bonds are not broken but are redistributed.

HOW TO SPOT A METAL

Metals are everything on the **left** of the *stairs* in the Periodic Table.


PHYSICAL PROPERTIES

Therefore, metals are good conductors of heat and electricity. *Electrical conductivity requires free electrons or ions.*

Therefore, metals tend to have a fairly high melting and boiling point.

Therefore, metals will not dissolve in water.

Therefore, metals are malleable (can be shaped/bent) and ductile (can be pulled into a wire).

WRITING FRAMES

ELECTRICAL CONDUCTIVITY (EXAMPLE WITH Mg)

For something to conduct electricity, it must have delocalised electrons or mobile ions. **Mg** is a metal. In **Mg**, the atoms are held together by strong metallic bonds in a sea of delocalised electrons. Therefore, **Mg** can conduct electricity.

HIGH MELTING POINTS (EXAMPLE WITH Cu)

Cu is a metal. In **Cu** metal, the atoms are held together by strong metallic bonds in a sea of delocalised electrons. A lot of heat energy is required to break the metallic bonds to separate the **Cu** atoms. Therefore, **Cu** has a high melting point.

SOLUBILITY IN WATER (EXAMPLE WITH Zn)

Zn is a metal. In Zn metal, the atoms are held together by strong metallic bonds in a sea of delocalised electrons. The metallic bonds do not break in contact with water. Therefore, Zn does not dissolve in water.

DUCTILE, MALLEABLE (EXAMPLE WITH Pb)

Pb is a metal. In **Pb** metal, the atoms are held together by strong metallic bonds in a sea of delocalised electrons. When a force is applied to a metal, the metallic bonds are not broken but are redistributed. Therefore, **Pb** is malleable (can be shaped) and ductile (can be drawn into wires).

WRITING FRAME KEY POINTS

All the writing frames above cover the following points:

- States that the example is a metal.
- States that the type of particle which metals is made of are called atoms.
- States how the atoms are arranged.
- States the type of bonding between particles (metallic bonding)
- Relates the structure to its property.
- Finishes the paragraph with a concise summary.

Highly recommended: including a diagram (see left).

IONIC

DESCRIPTION OF STRUCTURE:

As a solid, cations (+) and anions (-) held rigidly in place by strong ionic bonds in a 3D crystal lattice.

Type of Bonding: Ionic

These are very strong and will require a large amount of heat energy to overcome. Ions are mobile when liquid.

Ionic bonds are overcome by δ^+ to anion and δ^- to cation attraction between water and ionic solids. The ions are then mobile.

When a force is applied, the cations align with other cations **and** anions align with each other giving a repulsion.

HOW TO SPOT AN IONIC SUBSTANCE

1) Something on the **left** of the *stairs* with something on the **right**.

2) A cation with any anion from The Table of Ions (Year 11 Science, not given in Year 12)

PHYSICAL PROPERTIES

Therefore, ionic solids do not conduct electricity. *Electrical conductivity requires free electrons or ions.*

Therefore, ions have a very high melting and boiling point. When molten, liquid, ionic substances can conduct electricity.

Therefore, ions are soluble (will dissolve) in water. Dissolved ionic substances will conduct electricity.

Therefore, ionic solids will **shatter** under enough force.

DIAGRAM Ionic bonds between cations and anions

WRITING FRAMES

ELECTRICAL CONDUCTIVITY (EXAMPLE WITH SOLID MgCl₂)

For something to conduct electricity, it must have delocalised electrons or mobile ions. **MgCl**₂ is an ionic solid. In **MgCl**₂, the cations and anions are held rigidly in place by very strong ionic bonds in a 3D crystal lattice. There are no mobile electrons, or ions, therefore **MgCl**₂ does not conduct electricity in the solid state.

HIGH MELTING POINTS (EXAMPLE WITH SOLID CuSO₄)

 $CuSO_4$ is an ionic substance. In solid $CuSO_4$, the cations and anions are held rigidly in place by very strong ionic bonds in a 3D crystal lattice. A lot of heat energy is required to break the ionic bonds to separate the Cu^{2+} and SO_4^{2-} ions. Therefore, $CuSO_4$ has a high melting point.

Solubility in Water (Example with $ZnCl_2$)

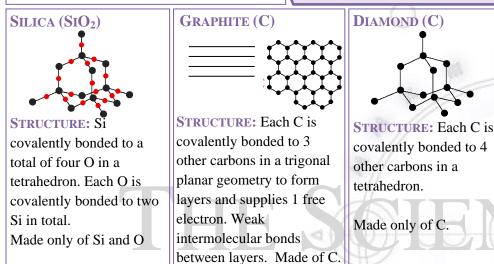
 $ZnCl_2$ is an ionic substance. In $ZnCl_2$ the cations and anions are held rigidly in place by very strong ionic bonds in a 3D crystal lattice. The ionic bonds are overcome by δ^+ to anion and δ^- to cation attraction between water and ionic solids. The ions are then mobile. Therefore, $ZnCl_2$ dissolves in water.

WRITING FRAME KEY POINTS

- All the writing frames above cover the following points:
- States that the example is an ionic substance.
- States that the type of particle which metals is made of are called ions

(cations/anions).

- States how the ions are arranged.
- States the type of bonding between ions (ionic bonding, avoid electrostatic)
- Relates the structure to its property.
- Finishes the paragraph with a concise summary.


Recommend including: a diagram (example on left).

3D EXTENDED COVALENT SOLID

Allotropes are the different forms

an element can take. Diamond and graphite are allotropes of carbon.

How to Spot A 3D Ext. Covalent You are limited to three. Silica (SiO₂), Graphite (C) and Diamond (C).

MELTING POINTS: Covalent bonds are also called intramolecular forces. Intramolecular forces are **very strong** and will require a lot of **heat energy** to overcome. This means 3D extended covalent network solids have high melting points.

HARDNESS: The **intra**molecular forces also need a lot of force to break them. This makes them hard. However, graphite has weak **inter**molecular forces between layers which needs very little force to overcome. Therefore, layers in graphite can slide.

ELECTRICAL CONDUCTIVITY: There are no mobile electrons or ions present. The exception is graphite, where each carbon can supply one free electron that is mobile. Therefore, graphite can conduct electricity.

SOLUBILITY: Intramolecular forces are very strong and do not break in solvents such as water. Therefore, extended covalent network solids do not dissolve.

WRITING FRAMES

ELECTRICAL CONDUCTIVITY (EXAMPLE WITH GRAPHITE)

For something to conduct electricity, it must have delocalised electrons or mobile ions. **Graphite** is a 3D extended covalent network solid made of **carbon**. In **graphite**, Each C is covalently bonded to 3 other carbons in a trigonal planar geometry to form layers and supplies1 delocalised electron. Therefore, **graphite** can conduct electricity.

ELECTRICAL CONDUCTIVITY (EXAMPLE WITH SILICA)

For something to conduct electricity, it must have delocalised electrons or mobile ions. **Silica** is a 3D extended covalent network solid made of **silicon and oxygen**. **In silica**, Each Si atom is covalently bonded to a total of four O atoms in a tetrahedron. Each O is also covalently bonded to two Si in total. There are no free electrons. Therefore, **silica** cannot conduct electricity.

HIGH MELTING POINTS (EXAMPLE WITH DIAMOND)

Diamond is a 3D extended covalent network solid made of **carbon** atoms. In **diamond**, each C is covalently bonded to 4 other carbons in a tetrahedron. A lot of heat energy is required to break the covalent bonds (intramolecular bonds) to separate the C atoms. Therefore, **diamond** has a high melting point.

HARDNESS (EXAMPLE WITH Diamond)

Diamond is a 3D extended covalent network solid made of **carbon** atoms. In **diamond**, each C is covalently bonded to 4 other carbons in a tetrahedron. A lot of force is required to break the covalent bonds (intramolecular bonds) to separate the C atoms. Therefore, **diamond** is very hard.

WRITING FRAME KEY POINTS

All the writing frames above cover the following points:

- States that the example is a 3D extended covalent network solid.
- States that the solid is made of atoms, and the types of atoms.
- States how the atoms are arranged (e.g: tetrahedral, what they bond to, layers).
- States the type of bonding between particles (covalent, intramolecular say both.
- Intermolecular for layers.)
- Relates the structure to its property.
- Finishes the paragraph with a concise summary.

MOLECULAR I

DESCRIPTION OF STRUCTURE:

Made up of molecules (could be polar or non-polar). No free ions or electrons present.

Type of Bonding: Intermolecular Forces These are **very** weak and only require little heat energy to overcome.

Polar molecules dissolve in **polar** substances because they are attracted to each other. This leaves behind non-polar molecules, which are not attracted to anything.

Non-polar molecules can form instantaneous dipoles, allowing them to be very slightly soluble in polar solvents.

SPOT A MOLECULAR SPECIES

Made of atoms on the **right** of the stairs, and/or hydrogen.

OR learn the other 3 substances really well, and treat these as "everything else".

PHYSICAL PROPERTIES

Therefore, molecular substances do not conduct electricity. Electrical conductivity requires free electrons or ions.

Therefore, molecular substances have very low melting and boiling points.

Like dissolves like. Polar dissolves in polar. Non-polar dissolves in non-polar. Polar and non-polar do not


Non-polar molecules are only very slightly soluble in polar solvents.

DIAGRAM

This involves drawing Lewis Structures and using VSEPR to determine the shapes. Sorry, there is no shortcut here.

As an incentive, there has always been a question about Lewis Structures/ Shapes/ Bond Angles. It's not a case of "it might be asked", because it **definitely will be.**

only the valence electrons.

STEP 1:Draw dot-diagrams of each atom involved, showing

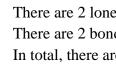
STEP 2: connect one dot from the central atom to a dot from one of the other atoms.

STEP 3: Make sure all the 'other atoms' have been joined to the central atom at least once.

STEP 4: Pair up as many electrons as you can from the central atom to the other atoms.

STEP 5: Draw your Lewis Structure Diagram

H₂O CO_2 Done. H has hit its maximum of 2 electrons. H


HOW TO: DETERMINE THE SHAPE OF A MOLECULE

Learn Lewis Structures first.

STEP 1:Count the regions of electron density around the central atom. Single, double and triple lines (bonds) count as one region. Every lone pair counts as one region.

STEP 2: Use the table on the next page to determine the shape. Note, the table is not given in assessments. Learn it.

H₂O

There are 2 lone pairs. There are 2 bonding pairs. In total, there are 4 regions.

Water is bent/v-shape with bond angles of about 104.5°

MOLECULAR II

SHAPES OF MOLECULES:			
Regions	0 Lone Pairs	1 Lone Pairs	2 Lone Pairs
2	X A X LINEAR 180°	When looking for regions, we only care about the central atom. Lone pairs, single, double and triple bonds count as one region	
3	TRIGONAL X A PLANAR A 120° X	BENT JUST UNDER 120° X	*
4	TETRAHEDRAL X X-A 109.5° X X	TRIGONAL X PYRAMID X-A ~107° X	BENT X ~104.5° X

The **parent shape** is the shape listed in the "0 lone pairs" column. As we move across a row, we are simply swapping out bonds for lone pairs. Note that we **do not** show lone pairs **OR multiple bonds** when we draw shapes.

VSEPR THEORY:

Regions of electron density repel each other. Regions occupied by lone pairs have the greater repulsion compared to bonding pairs.

POLARITY OF MOLECULES:

Polar Molecules: have polar bonds. The vector dipoles do not cancel and the molecule is asymmetric.

No-polar Molecules: have non-polar bonds. <u>**OR**</u> has polar bonds, but the dipoles cancel and the molecule is symmetric. **Note:** to determine if dipoles cancel out, use the tug-of-war red-ribbon analogy. Central

atom = red ribbon, bond = rope, atoms = people pulling. If the ribbon moves, the dipoles do not cancel.

Polar bonds will always be present if two atoms in a bond are different. This is because different atoms have different electronegativity. Electronegativity is the ability to pull on covalently bonded electrons. Atoms higher up, and to the right, on the Periodic Table have higher electronegativity and are marked by δ^- . Lower and to the left atoms are given δ^+ .

WRITING FRAMES

SHAPES OF MOLECULES (EXAMPLE WITH NH₃)

NH₃ has 4 regions of electron density, giving it a parent shape of **tetrahedral** with bond angles of **109.5**°. However, **3** of these regions are occupied by bonding pairs of electrons (**N-H**) and **one** is occupied by a lone pair of electrons. This gives it a **trigonal pyramid** shape, and since the lone pair exerts more repulsion than the bonding pairs (VSEPR) there is a bond angle of about **107**° to achieve maximum separation and minimum repulsion.

POLAR MOLECULES (EXAMPLE WITH CH₃Cl)

A polar molecule has polar bonds and the vector dipoles in the molecule do not cancel. The molecule is asymmetric. CH₃Cl contains 3 polar C-H bonds and one polar C-Cl bond. These are arranged in a tetrahedral geometry about a central C atom. The vector dipoles do not cancel out and the molecule is asymmetric, making the overall molecule polar.

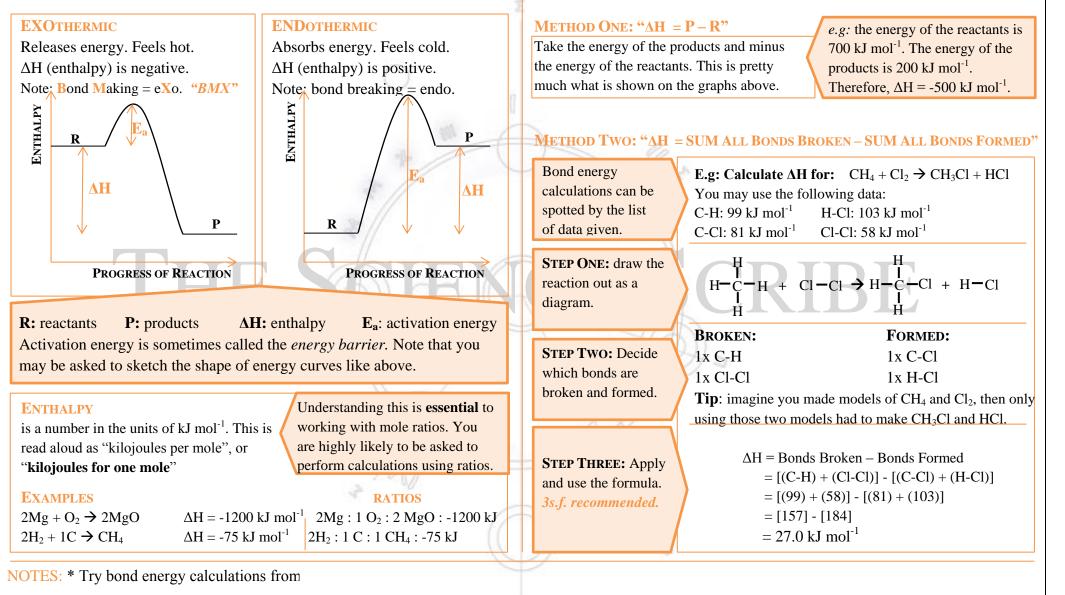
NON-POLAR MOLECULES (EXAMPLE WITH BF3)

A non-polar molecule has no polar bonds, OR it has polar bonds but the vector dipoles cancel out and the molecule is symmetric. BF_3 contains 3 polar B-F bonds. These are arranged in a trigonal planar geometry about a central B atom. The vector dipoles cancel out and the molecule is symmetric, making the overall molecular non-polar.

Melting Points (Example with I_2)

 I_2 is a discrete molecular substance with very strong intramolecular forces between I atoms. However, very weak intermolecular forces exist between I_2 molecules. The intermolecular forces require very little heat energy to break, therefore I_2 has a low melting point.

Solubility in Water & Cyclohexane (Example with I_2)


 I_2 is non-polar molecule, therefore we expect it to dissolve in non-polar solvents such as **cyclohexane**. We do not expect I_2 to dissolve in **water** because water is polar. However, I_2 is actually very slightly soluble in **water** because I_2 has the ability to form instantaneous dipole attractions.

WRITING FRAME KEY POINTS

In all cases above, the inclusion of diagrams is highly recommended.

CALCULATING ENTHALPY

ENERGETICS I

W W W.SCICICCSCITUC.CO.IIZ

NOTES:

ENERGETICS II Method Three: "Ratios" – FIND MASS OR MOL

E.g: $2Mg + O_2 \rightarrow 2MgO$

unknown = 300 kJ.

energy. $M(Mg) = 24.0 \text{ g mol}^{-1}$

NEEDED TO RELEASE/ABSORB X AMOUNT OF ENERGY.

STEP ONE: write the ratio against energy. Remove negative sign. Call this **known.**

STEP TWO: the energy needed or wanted is the **unknown.**

STEP THREE: multiply by **"unknown over known"**.

1 Mg x (unknown/known) = 1 x (300/600) = 0.5 mol of Mg. m(Mg) = n x M = 0.5 x 24 = 12.0g *3sf*

Calculate the mass of Mg needed to release **300 kJ** of

2Mg : 1200 kJ simplifies to... 1 Mg : 600 kJ

 $\Delta H = -1200 \text{ kJ mol}^{-1}$

(known)

METHOD THREE: "Ratios" - FIND ENERGY RELEASED WHEN X MOL/GRAMS IS USED.

STEP ONE: write the ratio against energy. Remove negative sign. Call this **known.**

STEP TWO: convert any other values to mol. Call this **unknown.**

STEP THREE: multiply by **"unknown over known"**.

E.g: $2Mg + O_2 \rightarrow 2MgO$ $\Delta H = -1200 \text{ kJ mol}^{-1}$ Calculate the energy released when **12g of Mg** is used. M(Mg) = 24.0 g mol^{-1}

2Mg : 1200 kJ simplifies to... **1 Mg** : 600 kJ (known)

12g of Mg in mol: n = m / Mn(Mg) = 12g/24.0g mol⁻¹ = **0.5 mol (unknown)**

600 kJ x (unknown/known) = 600 kJ x (0.5/1) = 300 kJ released **TIP: "what's given** *is known*" - the question gives you a number in **kJ**. Therefore your known is the number in the ratio that has the units given in **kJ**.

Check if the question wanted the final answer in mass (g) or mol.

TIP: "what's given is

known " – the question

gives you a number in

mol (if it's in gram,

quickly). Therefore

your **known** is the

number in the ratio

given in **mol**.

convert it to mol

CRIBE

Write *released* if original enthalpy was negative. 3sf recommended.